Avalanche dynamics of elastic interfaces.
نویسندگان
چکیده
Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d<d(uc). The singularity at small velocity P(u[over ·])~1/u[over ·](a) is substantially reduced from a=1 (MFT) to a=1-2/9(4-d)+... (short-ranged elasticity) and a=1-4/9(2-d)+... (long-ranged elasticity). We show how the dynamical theory recovers the avalanche-size distribution, and how the instanton relates to the response to an infinitesimal step in the force.
منابع مشابه
APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS IN STABILITY INDEX AND CRITICAL LENGTH IN AVALANCHE DYNAMICS
In this study, Stability analysis of snow slab which is under detonation has developed in the present model. The model has been studied by using the basic concepts of non-detonation model and concepts of underwater explosions with appropriate modifications to the present studies. The studies have also been extended to account the effect of critical length variations at the time of detonation an...
متن کاملDirected avalanche processes with underlying interface dynamics.
We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall. The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-Parisi-Zhang (KPZ) universality class. We formulate relations between the ...
متن کاملNonstationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model.
We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-force landscape, the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on quasistatic driving of elastic interfaces (Barkhausen noise in magnets, earthquake statistics, shear dynamics of granular matter) exhibit the same universal behavior as this model. It also appears as a limit...
متن کاملDisplacement Fields Influence Analysis Caused by Dislocation Networks at a Three Layer System Interfaces on the Surface Topology
This work consists in a numerically evaluation of elastic fields distribution, caused by intrinsic dislocation networks placed at a nanometric trilayers interfaces, in order to estimate their influence on the surface topology during heterostructure operation. The organization of nanostructures is ensured by the knowledge of different elastic fields caused by buried dislocation networks and calc...
متن کاملMolecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces
In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2013